PHYSICAL REVIEW E, VOLUME 64, 021513
Kinetics of phase separation in polymer-solvent mixtures
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We investigate the kinetics of phase separation in systems with a strong asymmetry in the mobility. This
simple model system mimics the segregation kinetics of polymer-solvent mixtures, where the polymer-rich
phase forms a low-mobility gel. We obtain detailed numerical results for this model, both without and with
thermal noise. In the absence of thermal noise, we find that domain growth is slowed down drastically when
the low-mobility phase percolates the system. However, thermal noise restores rapid domain growth through a
Brownian coalescence mechanism.
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I. INTRODUCTION

Consider a binary mixtur¢AB), which is in a homoge-

PACS nunier64.70.Dv, 64.60-i

of intense study and has been characterized both experimen-
tally and numerically 1]. Our analytical understanding of the
structure factor is not yet complete, and is confined to the

neous state at a high temperature. If this system is rapidllimit where one of the components is present in a vanish-
guenched below the coexistence curve, the preferred equilibhgly small fraction[3]. For the important case of a critical
rium state is one where the components are segregated. Theench, i.e., approximately equal fractions of both compo-
temporal evolution of the unstable homogeneous mixture tments, there is an analytical understanding @f) for y—0

a phase-separated state has received much attention in taedy—« [1]. However, there is no comprehensive theory
literature[1]. Typically, the mixture segregates into domainswhich interpolates between these two extremes.

which are enriched in either component. These domains Recent studies have attempted to incorporate and under-
coarsen with time and are usually characterized by a growingtand the effects of various experimentally relevant features
time-dependent length scalgt), wheret is the time after on the dynamics of phase separation, e.g., quenched and an-
the quench. A direct consequence of the existence of aealed disorder§4]; surfaces with a preferential attraction
unique length scale is the dynamical scaling of the correlafor one of the components of the binary mixtliggd; system-

tion function[2], i.e., atic flow fields; etc. An important class of studies in this
context has investigated phase separation in polymer-solvent
mixtures, with particular focus upon polymer-specific prop-
erties. Our present study belongs to this class — we investi-
gate domain growth in polymer-solvent mixtures, where the
polymer-rich region undergoes gelation. In particular, we are
interested in the impact of reduced mobility of the gel phase
on the kinetics and morphology of phase separation.

This paper is organized as follows. Section Il summarizes
available numerical and analytical results for this problem.
Section Il describes our dynamical model and its linear sta-
bility analysis. In Section IV, we present detailed numerical

C(rO=(J(ROPY(R+1,1)) = (¢(RO)PY(R+T,1))

~o| 5

where ¢(r,t) is the relevant order parameter at painand
time t. The angular brackets in E¢l) refer to an averaging
over independent initial conditions and noise realizations
andg(x) is a scaling function, which is independent of time.
e

This dynamical-scaling property reflects the fact that th results obtained from simulations of the dynamical model.

morphology of the coarsening system is statistically self-_. ) ;
similar in time, and only changes by a scale factor. Experi-Fma"y’ Sec. V concludes this paper with a summary and

mental studies usually measure the time-dependent structugéscuss'on of our results.
factor S(k,t), which is the Fourier transform oE(r,t) at
wave vectork. The appropriate dynamical-scaling property
for the structure factor i§(l2,t) =L(t)%(kL(t)), whered is
the dimensionality; and the scaling functiéy) is also in- In this section, we undertake a brief review of available
dependent of time. numerical and analytical results for phase-separating
Most studies of phase separation have focused upon d@olymer-solvent mixtures when the polymer undergoes gela-
termining the behavior ot (t) and the scaling functions tion. There have also been many experimental studies of the
g(x) or f(y) [1]. In the case of binary mixtures without interplay of phase separation and gelation. It is not our in-
hydrodynamic effects, there is a reasonable understanding ¢dntion to review these here, but we discuss representative
domain growth, which is driven by the evaporation- results which will motivate our subsequent discussion. The
condensation mechanism. The resultant growth law is th@rocess of gelation corresponds to the formation of an inter-
so-called Lifshitz-SlyozoyLS) law, L(t)~t¥3[3]. The scal- connectedor percolatefistructure due to chemical bonding
ing form of the structure factdi(y) has also been the subject or topological crosslinkages. Experimentalists differentiate

r
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IIl. SUMMARY OF AVAILABLE NUMERICAL AND
ANALYTICAL RESULTS
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between: (a) chemical or irreversible gels, where the usual LS law,L(t)~t*3. In the case where the “gelfor
crosslinking is due to strong covalent bonds; #odphysical  glasg phase is the majority phase, domain growth is hin-
or reversible gels, where the crosslinking is due to wealdered by the presence of a percolated low-mobility phase.
hydrogen bonds or topological constraints. In a mean-fieldHowever, Sappelt and Jackle did not observe complete freez-
(MF) approach, the gelation condition ig?[e®sK/(1  ing in their simulations—rather, they found that domain
+ePeK)]=p., where ¢ is the polymer densityK is the  growth proceedsalbeit slowly through the collective mo-
bond strength,=1/Ty, whereT, is the gelation tempera- tion of droplets of the minority phase.
ture (kg=1); andp. is the percolation probability. In gen-  The model we investigate in this paper also belongs to the
eral, viscosity in gels is extremely high and the diffusive above class. However, the focus of our study is different.
transport of particles through a gel is strongly suppressed. Both of the above studies are deterministic, and do not in-
Next, we consider a polymer-solvent mixture which hascjyde thermal fluctuations. On the other hand, we are particu-
been quenched below the miscibility gap. This mixture rap4ayly interested in the effects of thermal fluctuations on do-
idly segregates into polymer-rich and solvent-rich regions,yain growth in these systems.
The polymer-rich regions can undergo gelation depending on - an ‘aiternative approach to this problem was formulated

the temperatureT, and local polymer densityp. If T serimotoet al. [16], who investigated al=2 micro-
?Tg(ﬁf)_’ri‘_?_ phaset;]sepalr att_lon tprocess Iprocefeds to Cotr_nplgi:opic model for a polymer-solvent mixture, which explicitly
lon. g(#), the relative time scales of segregation ;... nteq for the elastic energy associated with gel deforma-

g;S)a?:lgo%elarlgggsgg; a;?ncnrtcl)cc::zléc\j/grggrggi T?étit:r? Er‘])%vsee\;er tj]pns. These authors demonstrated that the coarsening system
P P gan p P ' 'floze into a sponge-like structure, consisting of polymer-rich

7= Ty, there is an interesting interplay of phase separation nd solvent-rich domain result of elastic pinnin
and gelation. In this case, the gel formation can drasticall)? solvent-rich domains, as a resuit ot €lastic p 9-

slow down(or even freezephase separation because of the UK and Pur{17] have used similar considerations to for-
suppression of diffusiori6]. This is the situation we will Mulate a dynamical model with a suitable coarse-grained
focus upon in the present paper. Similar physical situationé'€€-energy functiondl18]. They studied this model numeri-
arise in the context of systems with chemical crosslinkingc@lly for d=2 and observed slow coarsening of the system in
reactiong 7]; and photo crosslinkingg]. a sponge-like domain structure. Onuki and Puri also used
Before we proceed, it is relevant to briefly mention sometheir model to obtain domain morphologies for the uniaxial
related studies involving polymer blend$AB) with ~ case, where domains are oriented in a particular direction.
crosslinking between the polymers A and B. These systemAgain, both of these studies neglected the effects of thermal
are referred to as “interpenetrated networkd®N’s) and are  fluctuations.
of considerable technological importan@. The static as- Finally, we discuss a Monte Car[dC) study by Glotzer
pects of these systems have been discussed by de Genmgsl. [19]. These authors considered a monomer-solvent
[10]; and analytic studies of early-time kinetics subsequenmixture on a lattice, with nearest-neighbor monomers being
to a quench are due to Derouicéieal. [11], and Chikina and  allowed to interact with two highly different energies—
Daoud[12]. An experimental studyvia small-angle neutron  corresponding to the absence or presence of a chemical bond
scattering of microphase separation in IPN was done by[20]. Glotzer et al. investigated phase-separation dynamics
Bruletet al. [13]. o in this model using the standard Kawasaki spin-exchange
_Let us now return to phase separation in polymer-solveniinetics. Their results showed that the initial stage of domain
mlxt_ures. Numerlca_l studies have_ atte_mpted to model anﬁrovvth (when there are few chemical bopds analogous to
replicate the experimental behavior discussed above. ONgy; tor simple binary mixtures. However, a sufficiently large

class of studies models the gel fp_rm{atlon by mt_rod.ucmg araction of strong bonds gives rise to a pinning effect, which
order-parameter-dependent mobility in the continuity equa-

. - X . e effectively freezes the evolving system into a microstructure.
tion for the local composition variable. This mobility is set to Of course. this svstem would ultimately coarsen into a two-
zero(or nearly zerpin the gel phase. An early study in this d S ilibri Y tructure but the ti y les b

class is due to Sciortinet al. [14], who numerically inves- omain equtiibrium structure but the time scales become ex-

tigated two-dimensional phase separation in a polymerlf€Mely long. However, as Glotzet al. remark, “freezing”

solvent mixture at critical composition, i.e., with equal frac- N their MC model is a consequence of the fact that the
tions of both components. These authors found that th8Vcroscopic spin-exchange kinetics is only permitted to
coarsening system rapidly froze into a microstructure, andnOVve one spin at a time—in this sense, the MC results are of
they studied the onset of freezing and the morphology of théestricted relevance for real experiments.

microstructure. Sappelt and JacKl€5] have also investi-

gated similar models id= 2, though in théequivalent con-

text of a glass-forming phase. These authors undertook a Ill. DYNAMICAL MODEL AND LINEAR STABILITY

detailed numerical study of a wide range of mixture compo- ANALYSIS

sitions, and distinguished between two physical situations. In
the case where the “gellor glas$ phase is the minority
phase, domain growth proceeds unhindered because there isThe starting point of our modeling is the lattice model of
a connected region of high mobility for transport of polymer Glotzer et al. [19]. We consider a monomer-solve(-B)
molecules. The corresponding domain growth law is themixture on a cubic lattice with the Hamiltonian

A. Lattice model and coarse-grained free energy
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H=— EAA;) nfnf— EBB;) nPn®+ eAB<Z> (nnP+nPnf) f(p,0)=— g(4e+ KO)p2+T[dInd+(1— p)In(1— )]
ij ij ij

qT
—K(Zj> mnfnf, ) + 5 ¢°L0In 6+ (1= H)In(1- )], (7)
wheree,;(>0) refers to the nearest-neighbor interaction en-Where there are two entropy terms: one for the site-
ergy between specidsandJ; andn®,nE are the occupation- occupation variables and the other for the bond-occupation
number variables at sitefor specileséi and B, respectively. variables. For order-parameter fields which vary slowly in

In Eq. (2), we have introduced the additional bond variableSPac€: W€ generalize the above expression to obtain
7ij€10,1}, which gives rise to an additional energy K) if a
chemical bond exists between two monomers. For a configu- F[¢,e]=f dr
ration withn'n,=0, we always have;,=0. It is straight-
forward to demonstrate thét,,,) =ef¥/(1+ e”X) for a con-
figuration withn*=n%=1, wheref=1/T(kg=1).

Without loss of generality, we selp= egg= €ap= €. Re-
calling thatn®=1—n#, we obtain

(6,005 (V9)2|, ®

where we have introduced surface tension at the monomer-
solvent boundary with strengid.

B. Dynamical model and linear stability analysis

The density field is conserved and we associate dissipa-
H=—i2 (4e+Kmj)nin;, (3 tive “model B” dynamics with it [21]. In the absence of
D thermal fluctuations, the appropriate evolution equation is

where we have dropped constant terms, and simplified nota-

tion (n*=n;). The appropriate ensemble has fixBdcom- o$(r.Y) = —€~j(F,t)=ﬁ~{M(¢,0)ﬁ oF ]
position, and number of sitds. It is straightforward to sum at o
over the bond variablgd 9] to obtain the partition function R R b
=V~[M(¢,0)V[—C{(46+ K0)¢+T|n(m)
Z=E'exp[[4ﬁe+ln(1+eﬁ'<)]2 nin;
) Y +qTe[61n 0+(l—0)|n(1—0)]—0'V2¢H.
E{;}IGXP{_BH effh 4 9)

In Eq. (9), the current](r,t) is proportional to the gradient
of the chemical potential. We have explicitly introduced an
order-parameter-dependent mobilif (¢, ), which has a
strong dependence on whether or not the system is locally in
the gel phase. The precise form of this function will be dis-
cussed later. The time scale of phase separatigni¢ also
incorporated inM (¢, 6).

The chemical bonding which results in gel formation also
has an associated dynamics, which we model as a relax-
ational nonconservedmodel A’ ) dynamicq 21] as follows:

where the sum over configuratiofis;} is constrained by the
overall composition of the binary mixture. Thus, our problem
reduces to the usual lattice géw Ising model, for which
many exact results are available.

Subsequently, we will consider the dynamical evolution
of a coarse-grainedmean-field or MK version of this
Hamiltonian. In MF theory, the critical coexistence tempera-
ture T, is defined through8.=1/T,)

g[4ﬁce+ln(l+eﬁcK)]=l, (5) R o
ae(r,t) 3 —oF M

0
A~ MaT Tﬁz[K‘T'”(m
whereq is the coordination number of the lattice. The mono-

mer densities in the coexisting phases &ig= (1= i)/2, o .
wherey is the positive solution of the transcendental equaln Ed- (10), the constant mobilitM incorporates the time
tion scale of gelatiorry. This equation has the static fixed point
0s=e”X/(1+ePX), as expected. Furthermore, the time scale
q of relaxation to this fixed point depends upon the local
¢O=tanr{z[4ﬁe+In(1+eBK)]¢O . (6) monomer density—there can be no chemical bonds in re-

gions where there are no monomers.

The system is initially in a high-temperature homoge-
Next, let us consider the coarse-grained version of the above yh ! !ﬂlll th _ Jlrg 1 .p 9 Bt — A g
lattice model, obtained using the Bragg-Williams approxima-neo‘{S phase wi o(r, )_¢9 g(r,»), (r, )f (1)
tion. First, we consider the Helmholtz free energy per spint x(r.t) (6(0)= 6;), where the fieldg(r,t) andx(r,t) are
for a homogeneous configuration witm;)= ¢, ()=, small-amplitude fluctuations. We have introduced a system-

viz., atic time-dependent solutiom(t)=V~1fdre(r,t), for rea-

. (10
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sons which will shortly become clear. Subsequent to theium value. Therefore, we consider the dynamics of fluctua-
quench, the growth of these fluctuations is determined by th@ons with 6(t)= 6. This simplifies Eqgs.(14)—(15) as

appropriate linearized equations follows:
JE(T 1) — — = = IE(K t
- =M<¢o,9>v2[[—q[4e+Ka—Tmn0 g ):M(¢O,es>k2[q[4e+T|n(1+eﬂK>]
TA-BiIn(1—3)]+ —— }f ! k? (&
— — n — — _——_—— e —
bo(1— o) $o(1-do)
0 =\(K)&(K, 1), 16
~ddo K—Tln(ﬁ X—avzg], (12) ell)dik.t) (16)
Kby oM TF
and a2 ey hwxky. A0
dg(t)th?X(F,t):ﬂd)z K—TIn 0 These equations have the obvious solutiog¢k,t)
dt at 2 70 1-6, = exp N (R1EK0); x(K,t)=exfg\ t]x(k0), fixing the time
_ scales of growth and decay of initial fluctuations in terms of
— | 0 parameters, which can be experimentally obtained. As ex-
+aMdo K—=Tln 1-0, § pected from the static considerations of Sec. Il A, the insta-
bility condition is
M T¢
_qT_ % (12) »
0(1-0) gl4Be+In(1+ef*)]— (18

Fo1—do) -

If the system is unstable to phase separation, the growth of
initial fluctuations is amplified by the presence of chemical
bonds. This is because the system finds it both energetically
and entropically favorable to phase separate into polymer-
rich regions, thereby facilitating the formation of chemical
bonds.

The inhomogeneous term on the right-hand-side of Eq

(12) determines the thermalization E(t) to its equilibrium
value

_ ehK
0()= as:m- 13

More generally, we consider the Fourier transform of Eqs.C. Incorporation of thermal noise and dimensionless rescaling

(1D—(12) without the systematic piece as follows: We will consider the physically relevant limit where the

time scale of gelation4,) is much faster than the time scale

d&(k, ) _ M((;So,g)kz{ [q[4e+ Ko—ToIn o of segregation £5). Thus, the bond variablé(F,t)= 0 ev-
at erywhere and the appropriate dynamical equationgfr,t)
B - T is
-T(1-0)In(1-6)]— ——F+——0ok? -
s i S0 .
_ VM@0V —q[4e+TIn(1+ef) ]
0
1_ 0 2
+Tln 1-% —oVep
=ayé(k,t) +ax(ktb), (14) o
=-V-J(r,t), (19
and
R o o which is just the usual Cahn-Hilliar@CH) equation with an
ax(k,t) — 0 gM Td)é order-parameter-dependent mobility. We introduce thermal
=qMeo| K=TIn| —=] |{— 5 =—=x fluctuations through a conserved noise term in the current as
at 1-6 2 6(1-9)
=a,£(K, 1) +agx(K.t). 15 Ip(r) oo
216(K, 1) +agx(K,t) (15 g — VIO +5(r, D). (20)

We can obtain a general solution of this matrix equation,
even though the coefficients; are time dependent. How- For the case of constant mobility) (¢, 65)=M,, there is a
ever, recall that)(t) is exponentially saturated to its equilib- standard prescription for the properties of noise so that the
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system approaches its correct equilibrium, i.e., the Gaussian 1 q T
white noise has a zero average and obeys the fluctuation-  ¢=u¢s’, s=\/3|qBe+ Zln(1+eBK)—1 ;
dissipation relation - :

(n(r,1))=0, F=&r, &= ] T :
. . . 4AT| qBe+ 9|n(1+eﬁ'<)—1
(mi(r, ) m(r',t'))=2MgT&;6(r—r")s(t—t"). (21) ] 4 ]
In the present context, we are interested in a physical , 3¢2

situation where the mobility explicitly depends upon the or- t=rt’, 7= m;
der parameter, i.e., we expect the mobility to be drastically 0%s
diminished in the gel phase. To the best of our knowledge, 2T Mgy
there is no clear prescription for the correct properties of n= $;7r_ (23)
noise in this case. The straightforward generalization re- 3¢

placesM, in Eq. (21) by the corresponding order-parameter-
dependent mobility22]. There is some justification for such
a generalization. For example, De@23] has derived the
stochastic equation obeyed by the density variable in an as- -
sembly of Brownian particles interacting through a pair po- IP(r.) —
tential. This stochastic equation involves an order-parameter- at
dependent mobility of the fornM(¢)=Mgy¢, and Dean )
demonstrates the above generalization to be correct in thiith

context. More generally, the above prescription is only the - -
first term in a Taylor-series expansi¢@4]. In the present (n(r,1))=0,
paper, we model thermal fluctuations by replaciMy
—M(¢,6s) in Eq. (21). We should stress that we are inter-
ested in the far-from-equilibrium evolution of the system,
rather than the final approach to equilibrium, which would
depend more sensitively on the precise nature of thermal =eh(y) 5”.5(F_ F')g(t_tf), (25)
fluctuations.

Next, we model the mobility following Sciortin@t al. ~ wheree measures the strength of “dimensionless” noise; and
[14], and Sappelt and JacK&5]. Recall that the mobility is  h(y)=h[p.— (1+ )?(644)]. This is the model we use to
very low in the gel-rich phase and normal in the solvent-richobtain the numerical results which are presented in the next
phase. The density of chemical bonds in a regionpis Sec. IV.
=26, and the region is in the gel phasegtp., the
corresponding percolation probability. Therefore, we set IV. DETAILED NUMERICAL RESULTS

M (&, 0s)=Moh(p)=Mgh(p.— $?6s), whereh(x)=0 if x
<(()¢an(sj)ﬁ(x)0=1((?f)x>00 (Pe= #765) () We have numerically solved Eq§24)—(25) on ad=2

. - 2 . . . o n .
For the simulations described in Sec. 1V, it is convenient:;tgizsgss'fﬁ’e\l ljsvt\algha?]eigg?rg ?f%ﬁ:r%é%?:;it;:?izr']nstézg]me
to introduce the order parametefr=2¢—1. The corre- ' P

. : : . to approximate derivatives. The discretization mesh sizes
sponding dynamical equation for the order parameter is wereAx=1.3 andAt=0.05. We work in the strong-bonding
limit with K large so tha¥s=1. The initial condition for the

[4T—4ge—qTIn(1+e”) ]y order-parameter fields(r,0) in each run consisted of uni-
formly distributed small-amplitude fluctuations about an av-
erage valuel,. Thermal noise of amplitude was mimicked

, (22 by uniformly distributed random numbers with amplitude

=/3e/AxAt. We have also performed simulations with

Gaussian-distributed noise and the results are similar to those

presented here for uniformly distributed noise.

We characterize domain growth from a homogeneous ini-
tial condition by: (a) evolution pictures and profilesb)

2y } time-dependent structure factors; d@ogcharacteristic length

ZS scales. The structure factor is defined aS(IZ,t)
=(|y(K,1)|?), wherey(K,t) is the discrete Fourier transform

where i is the saturation value of the order parameter.  of zp(F,t): zp(F,t)— o, and the angular brackets refer to an
Finally, we introduce dimensionless rescaling as followsaveraging over different initial conditions and noise realiza-
(with T<T,.): tions. For ad=2 lattice, the wave vectors take discrete val-

This results in the dimensionless equatidnopping primeps

VAh(V[— g+ = V2yl+ 7}, (24

. . 6 d/2 .
(ni(r,t)nj(r’,t’)>=F(§) h(¢) o5 0(r—r")s(t—t")

ap(r t)
ot

=V*.[M(¢,as)v*

4T R
+ ?zﬂs—avzlﬂ +7

where we have expanded the functig()=In(1+)
—In(1—4¢) up to cubic order irny. The mobility is now de-
fined as

M (4, 65) =Mgh()=Moh| p.— 1"’%
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ues Ez(Zw/NAX)(nX,ny), where n, and n, range from
—(N/2) to (N/2)— 1. The structure factors are normalized as
N‘22|;S(IZ,t)=1, and then spherically averaged to obtain
the scalar functionS(k,t). The structure-factor data pre-
sented here are obtained as an average over 20 independe.,
runs for systems of sizbl=512. The characteristic length
scaleL (t) is defined as the inverse of the first moment of the
scalar structure factor, i.eL(t)=(k) "1, where

Time = 100
256 —

kadk kSk,t)

0 Time = 2000 Time = 20000
” . (26) 256 AT , '
m
J dk gk,t)
0

(k)=

A e

In Eq. (26), k., is the upper cutoff on the discrete lattice =
value ofk. Typically, we setk,,, equal to half the magnitude
of the largest wave vector lying in the Brillouin zone of the

lattice. 4

Y
S

2
S0
rivine]

) 256 0 256
A. Results for case withT=0 N X

Let us first focus on results from deterministic simula- FIG. 1. Temporal evolution of our model from a random initial

tions, withe=0 (T=0) m_ Eqs.(24)_—(25). Th_ese_ results are condition. The initial state consisted of an order-parameter field
analogous to those obtained earlier by Sciorté@l. [14];  \yith uniformly distributed small-amplitude fluctuations about an
and Sappelt and Jackfes]. . _ average valuey,=0.3. The evolution pictures are obtained from an

Figure 1 shows the temporal evolution resulting from ajsotropic Euler discretization of the deterministic version of Egs.
random initial condition withj;,=0.3. All evolution pictures  (24)—(25) (e=0) with mesh sizeax= 1.3 andAt=0.05. The dis-
presented in this paper were obtained for lattices of Bize crete equations were implemented od=a2 lattice of sizeN?, with
=256. Regions with order parametér>0 (polymer-rich periodic boundary conditions in both directions. The snapshots
are marked in black, and regions with<0 (solvent-rich shown correspond to the case with=256. Regions with order
are unmarked. Recall that the gel phase is defined as a regiparameters>0 (polymer rich are marked in black, while regions
where a percolated cluster has formed, i¢26s= d)égs with <0 (solvent rich are unmarked. The evolution times label-
=1/2 for d=2. For 6,~1, we have ¢g:0-71 and l!/g ing each snapshot refer to the time after the initial quench.

=0.41. Thus, the dynamical evolution is frozen in regionsSu ests that the polvmer-rich phase is a maiority phase for
with ¢=¢,. Because of the asymmetry in local values of 99 Poly P jority p

the order parameter, the fractions of the gel and solveng)jf02 _a%%?ﬁi?hovggfr’ r?;srzgrl(;:rlcfl;gtj@i“iv‘ét;a::g]re value
phases arefy=(1+4p)/(1+4g) and fs= (g~ tho)/(1 Yo P p =—0.2. Foryyq

& ¢}, respectively. Therefore, the gel phase percolates ths—o.z, the high-mobility phase percolates and there is no
.97 P y- S gel p P Rindrance of the usual evaporation-condensation mechanism
lattice for o> (43— 1)/2. Figure 1 shows the emergence of

droplets of the solvent-rich phase in a percolated matrix o{or phase separatigil]. In this case, the numerical data for

- y he length scale is consistent with the LS growth layt)
zero-mobility gel phase. As expected, the system freezes~t1,3 For d>—0.2. the phase-separation process is “fro-
into a microstructure, though there may still be an extremelyzen,, aue tolr/jothe aﬁsénce gf diﬁusioF;] in the percolated Zero-
slow growth due to cooperative motion of droplgt$]. Fig- P

ure 2 shows the order-parameter profiles corresponding t?o%?:lillg{ittaegfgla':s(l)g\l/pvoi ;;)rﬁ’cglog\?;[ﬁgfig?g\gg mgﬁz a
the evolution pictures in Fig. 1. It is clear from these profiles Y '

that the dynamical evolution is frozen in most regions of theconseqguence .Of collective r_notlon of s_;olvent _droplets_ in the
system. gel phase—driven by chemical potential gradidiits]. Fig-

Figure 3 demonstrates the dynamical scaling of the time!'"® 4b) replots the data from Fig.(&) on a log-log scale.

dependent structure factor for the evolution shown in Fig. 1.
In this figure, we superpose data f8¢k,t)L(t) 2 versus
kL(t) from different times. The scaling is excellent, whichis ~ As we have stated earlier, our primary interest in this
an obvious consequence of the fact that there is almost npaper is the effect of thermal fluctuations on the above sce-
evolution of the morphology!! Nevertheless, the form of thenario. The introduction of noise in the context of a system
scaling function is of interest to us. We will subsequentlywith order-parameter-dependent mobility has already been
compare this function with the scaling function for the casediscussed in Sec. Il C. We have obtained numerical results
with thermal noise. for a range of moderate values of the noise amplitude, and

Figure 4a) plots the characteristic length scdlét) ver-  these results are similar up to prefactors. In this paper, we
sust for a range of values af,. Our simple argument above present representative numerical resultséder0.1.

B. Results for case withT>0

021513-6
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FIG. 2. Order-parameter profiles for the evolution pictures in = 4la -
Fig. 1. We plot the order paramete#(x,N/2t) vs x along a hori-
zontal cross section at the middle of the lattice. For clarity, we only % I I L |
present profiles for the regioxe [0,N/2]. The profiles are shown -3 - - 0 ! 2
for t=100,200,2000,20 000, and are denoted by the specified line InfkL(t)]

types. For reference, a horizontal line is drawn/gt 0.3. N
FIG. 3. (a) Superposition of data foB(k,t)L(t) "2 vs KL(t)

from timest=4000,12 000,20 000—denoted by the specified sym-

Figure 5 shows the temporal evolution in the noisy caseols, The simulation details and parameters are the same as in
from a homogeneous initial condition withy=0.3. Figure 5 Fig. 1. The structure-factor data are obtained as an average over 20
should be contrasted with Fig. 1—there are no signs ofndependent runs for lattices of sike=512. The length scale(t)
“freezing” or slow growth in the present context. The zero- is defined as the reciprocal of the first moment of the spherically
mobility phase still percolates the system, so domain growtlaveraged structure factdb) Plot of IMS(k,t)L(t) 2] vs InkL(t)] for
cannot occur via the evaporation-condensation mechanismdata from(a). The solid line has a slope of3 and refers to Porod's
However, the thermal noise induces Brownian motion oflaw, S(k,t)~k~ (@ for largek, which characterizes scattering off
droplets and phase separation proceeds via a droplet coalegharp interfacefl].
cence mechanism. Figure 6 shows the order-parameter pro-
files corresponding to the evolution pictures in Fig. 5. by thermal fluctuationsrestores a LS-like growth law (t)

Next, we examine the scaling of the time-dependent struc~t'3, This is the central result of the present paper. There
ture factor. Figure 7 plots data f&k,t)L(t) “2 versuskL(t)  are no signs of freezing in this case, unlike in the determin-
from different times. Again, the scaling is excellent, thoughistic case, and domain growth apparently proceeds to
the system undergoes rapid evolution in this case. The solidompletion. Of course, although the growth law is similar to
line refers to the scaled structure factat t=20000) from the LS law, the mechanism involved is quite different. Do-
the deterministic case shown in Fig. 3. The difference in th@nain growth occurs via the Brownian motion and coales-
scaled structure factors for the deterministic and noisy casasence of droplets. Consider a droplet of sizé he diffusion
reflects the difference in the morphologies. For the0  constant of this droplet i®~T/L, and the time required to
case, the initial fluctuations become trapped and well-formegraverse a distande scales as.>~ (T/L)t. Thus, we expect
domains are largely absent. Tfie-0 morphology(see Fig.  L(t)~(Tt)® for domain growth by Brownian coalescence.
1) is comparable to the initial stages of growth for the The argument is analogous to that of Of25]; and Siggia
>0 case, e.g., compare picturestat20000 in Fig. 1 and [26] in the context of binary fluids. The numerical results in
t=100 in Fig. 5. Figure () is a log-log plot of the scaled the lower frame are also consistent with the LS growth law,
structure factor data. The straight line with slop@ corre-  although the data foryy=0.0 is still not in the asymptotic
sponds to thel=2 Porod law,S(k,t)~k~(@*1) for largek,  regime. Forg,< —0.2, domain growth occurs due to both
which characterizes scattering off sharp interfaces. Our nuevaporation-condensation and Brownian coalescence mecha-
merical data for theT>0 case is in conformity with the nisms, which give rise to identical growth laws.

Porod law, indicating the presence of sharp domain walls. Experimentalist§6] have emphasized that phase separat-

Finally, we investigate the time dependence of the charing polymer-solvent systems freeze into microstructures only
acteristic length scale in Fig. 8, which plotgllift)] versus  when the quenches are deep. Bamsihl. [6] have argued
Int for ¢=0.4,0.3,0.2(upper frame¢ and ¢,=0.0,—0.2, that this is because the time scales of phase separation and
—0.3,— 0.4 (lower frame. The numerical results in the upper gelation are comparable only at low temperatures, allowing
frame demonstrate that Brownian motion of droplgisven  the gelation process to interfere with the phase-separation

021513-7



JITENDRA SHARMA AND SANJAY PURI

12 T T I(a)

0.2
0.0 (x=0.17)
-0.2 (x=0.31)
-0.3 (x=0.33)
0.4 (x=0.33)
CH

* x 4+ P> 00O

L(t)

Y

.....

|
15000

0 5000 10000 20000
t
T=0
o 041 I T
25| 8 03 h)_)
° 02
A 00
+ =02 1/3
2L d
5 151 / —
3 1 S5
pied
1+ i i , ]
i 009
* o L
F3 o o
05 © 4 o ooooees
’ o (n) (e} o 00 0 0 0000000X
| | | ! |
0
5 - 7 8 9 10

In(t)

FIG. 4. (a) Time dependence of characteristic length sé¢&jg
vs t for the deterministic T=0) evolution of our model. We
present results foiy,=0.4,0.3,0.2,0.0; 0.2,—0.3,—0.4—denoted
by the specified symbols. In each case, we attempted to fit the
numerical data to the power-law forma(t) =a+bt*, and the best- g
fit lines (wherever a fit was possiblare superposed on the relevant =2
data sets. The corresponding best-fit exponents are specified in th§
figure. The error bars on these exponents:afe01. For reference,
the solid line denotes length-scale data from a simulation of the
Cahn-Hilliard(CH) equation, i.e., Eqg24)—(25) with h(¢)=1 and
€=0. (b) Plot of IL(t)] vs Int for the data from(@). The solid line
has a slope 1/3 and refers to the Lifshitz-Slyozb8) growth law.

process. Our results in this paper present an alternative ex
planation, which may be relevant in some experiments. In

PHYSICAL REVIEW E64 021513

Time =200

aN e

FIG. 5. Analogous to Fig. 1, but with thermal fluctuations in-
cluded. The amplitude of thermal noise corresponding to this simu-
lation wase=0.1.

condensation mechanism for phase separation. However,
=] thermal fluctuations restore a LS-like growth law through the
Brownian coalescence mechanism. Clearly, deep quenches
suppress thermal fluctuations and also disable the Brownian
coalescence mechanism—thereby resulting in microstructure
formation in coarsening polymer-solvent mixtures.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and dis-

15

0.5

-15

g cussion of the results presented here. We have formulated a

|
100

general, the presence of a low-mobility percolated matrix FIG. 6. Analogous to Fig. 2, but for the evolution pictures in

suppresses diffusion and disables
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FIG. 7. Analogous to Fig. 3, but for the noisy evolution depicted —0.3-0.4. The solid line in both frames has a slope of 1/3, and
in Fig. 5. The solid lines ita) and(b) denote the=20 000 data for ~ '€fers to the LS growth law.
the T=0 case shown in Fig. 3.

ration, we believe that this generalization is reasonable in

simple dynamical model for phase separating polymerthat context.
solvent mixtures, where the polymer-rich region undergoes e have studied the growth of initial fluctuations about a
gelation. This model considers the coupled dynamics of tWOhomogeneous high-temperature state, subsequent to a
order parametersa) conserved kinetics for the polymer den- quench. The gelation process amplifies the growth of initial
sity field; and (b) nonconserved kinetics for the chemical f,cqations because it is energetically and entropically favor-
bond field, which models the possibility of a bond betweenyye for monomers to aggregate and form chemical bonds. In
monomers on neighboring sites. We are interested in Fhfhe context of linearized theory, we have quantified the time

physically relevant I|m|'t, where the time scale of gglatlon 'Sscales of growth of fluctuations in terms of experimentally
much faster than the time scale of phase separation. In th|ns1
easurable parameters.

limit, our dynamical model reduces to the usual CH model Subsequent to the linearized regime, the effects of nonlin-

for phase separation—generalized to include an order- i d th q ter-d dent bility b
parameter-dependent mobility, which is set to zero in the ge‘?arl y an € order-parameter-aependent mobility become
phase. relevant. In the absence of thermal fluctuations, the phase-

Our modeling does not explicitly account for hydrody- separating s_ystem “freezes” into a microstructyoe slows
namic effects. Nevertheless, we expect our results to apply i{fown drastically when the gel phase percolates the
that context also, because hydrodynamic modes are not rejystem—due to suppression of the evaporation-condensation
evant for phase separation in the strongly off-criticalmechanism for phase separation. However, in the presence of
quenches considered here. In general, these modes only Beermal fluctuations, phase separation is enabled by the
come relevant when the coarsening system has a bicontinBrownian motion and coalescence of droplets. The corre-
ous domain morphologyl]. Furthermore, even for bicon- sponding growth law is similar to the Lifshitz-Slyozov law,
tinuous morphologies, we expect high-viscosity gel-richi.e., L(t)~tY3. We believe that our results provide an alter-
regions to strongly dampen fluid velocity fields. native explanation for the experimental observation that pin-

Our primary interest in this paper is the effect of thermalning in phase-separating polymer-solvent mixtures occurs
fluctuations on phase separation in these polymer-solvertnly for low-temperature quenchég].
mixtures. To the best of our knowledge, there is no standard We are presently interested in investigating the effects of
prescription for the incorporation of thermal noise in modelsthermal noise on freezingor slow growth in models of
with order-parameter-dependent mobility. Therefore, we empolymer-solvent mixtures where the elastic energy has been
ploy a straightforward generalization of the usual prescrip-explicitly accounted fof17]. It seems plausible that Brown-
tion, which is justifiable in special casg22,23. As we are ian coalescence processes will also play an important role in
interested in the far-from-equilibrium problem of phase sepathat context.
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