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Kinetics of phase separation in polymer-solvent mixtures
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We investigate the kinetics of phase separation in systems with a strong asymmetry in the mobility. This
simple model system mimics the segregation kinetics of polymer-solvent mixtures, where the polymer-rich
phase forms a low-mobility gel. We obtain detailed numerical results for this model, both without and with
thermal noise. In the absence of thermal noise, we find that domain growth is slowed down drastically when
the low-mobility phase percolates the system. However, thermal noise restores rapid domain growth through a
Brownian coalescence mechanism.
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I. INTRODUCTION

Consider a binary mixture~AB!, which is in a homoge-
neous state at a high temperature. If this system is rap
quenched below the coexistence curve, the preferred equ
rium state is one where the components are segregated
temporal evolution of the unstable homogeneous mixture
a phase-separated state has received much attention i
literature@1#. Typically, the mixture segregates into domai
which are enriched in either component. These doma
coarsen with time and are usually characterized by a grow
time-dependent length scaleL(t), where t is the time after
the quench. A direct consequence of the existence o
unique length scale is the dynamical scaling of the corre
tion function @2#, i.e.,

C~rW,t ![^c~RW ,t !c~RW 1rW,t !&2^c~RW ,t !&^c~RW 1rW,t !&

5gS r

L~ t ! D , ~1!

wherec(rW,t) is the relevant order parameter at pointrW and
time t. The angular brackets in Eq.~1! refer to an averaging
over independent initial conditions and noise realizatio
andg(x) is a scaling function, which is independent of tim
This dynamical-scaling property reflects the fact that
morphology of the coarsening system is statistically s
similar in time, and only changes by a scale factor. Exp
mental studies usually measure the time-dependent stru
factor S(kW ,t), which is the Fourier transform ofC(rW,t) at
wave vectorkW . The appropriate dynamical-scaling proper
for the structure factor isS(kW ,t)5L(t)df (kL(t)), whered is
the dimensionality; and the scaling functionf (y) is also in-
dependent of time.

Most studies of phase separation have focused upon
termining the behavior ofL(t) and the scaling functions
g(x) or f (y) @1#. In the case of binary mixtures withou
hydrodynamic effects, there is a reasonable understandin
domain growth, which is driven by the evaporatio
condensation mechanism. The resultant growth law is
so-called Lifshitz-Slyozov~LS! law, L(t);t1/3 @3#. The scal-
ing form of the structure factorf (y) has also been the subje
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of intense study and has been characterized both experim
tally and numerically@1#. Our analytical understanding of th
structure factor is not yet complete, and is confined to
limit where one of the components is present in a vani
ingly small fraction@3#. For the important case of a critica
quench, i.e., approximately equal fractions of both com
nents, there is an analytical understanding off (y) for y→0
and y→` @1#. However, there is no comprehensive theo
which interpolates between these two extremes.

Recent studies have attempted to incorporate and un
stand the effects of various experimentally relevant featu
on the dynamics of phase separation, e.g., quenched an
nealed disorders@4#; surfaces with a preferential attractio
for one of the components of the binary mixture@5#; system-
atic flow fields; etc. An important class of studies in th
context has investigated phase separation in polymer-sol
mixtures, with particular focus upon polymer-specific pro
erties. Our present study belongs to this class – we inve
gate domain growth in polymer-solvent mixtures, where
polymer-rich region undergoes gelation. In particular, we
interested in the impact of reduced mobility of the gel pha
on the kinetics and morphology of phase separation.

This paper is organized as follows. Section II summariz
available numerical and analytical results for this proble
Section III describes our dynamical model and its linear s
bility analysis. In Section IV, we present detailed numeric
results obtained from simulations of the dynamical mod
Finally, Sec. V concludes this paper with a summary a
discussion of our results.

II. SUMMARY OF AVAILABLE NUMERICAL AND
ANALYTICAL RESULTS

In this section, we undertake a brief review of availab
numerical and analytical results for phase-separa
polymer-solvent mixtures when the polymer undergoes g
tion. There have also been many experimental studies of
interplay of phase separation and gelation. It is not our
tention to review these here, but we discuss representa
results which will motivate our subsequent discussion. T
process of gelation corresponds to the formation of an in
connected~or percolated! structure due to chemical bondin
or topological crosslinkages. Experimentalists differenti
©2001 The American Physical Society13-1
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between: ~a! chemical or irreversible gels, where th
crosslinking is due to strong covalent bonds; and~b! physical
or reversible gels, where the crosslinking is due to we
hydrogen bonds or topological constraints. In a mean-fi
~MF! approach, the gelation condition isf2@ebgK/(1
1ebgK)#5pc , where f is the polymer density;K is the
bond strength;bg51/Tg , whereTg is the gelation tempera
ture (kB51); andpc is the percolation probability. In gen
eral, viscosity in gels is extremely high and the diffusi
transport of particles through a gel is strongly suppresse

Next, we consider a polymer-solvent mixture which h
been quenched below the miscibility gap. This mixture ra
idly segregates into polymer-rich and solvent-rich regio
The polymer-rich regions can undergo gelation depending
the temperatureT, and local polymer densityf. If T
.Tg(f), the phase-separation process proceeds to com
tion. If T,Tg(f), the relative time scales of segregatio
(ts) and gelation (tg) are critical. Whents!tg , the phase-
separation process again proceeds to completion. Howev
ts>tg , there is an interesting interplay of phase separa
and gelation. In this case, the gel formation can drastic
slow down~or even freeze! phase separation because of t
suppression of diffusion@6#. This is the situation we will
focus upon in the present paper. Similar physical situati
arise in the context of systems with chemical crosslink
reactions@7#; and photo crosslinking@8#.

Before we proceed, it is relevant to briefly mention som
related studies involving polymer blends~AB! with
crosslinking between the polymers A and B. These syste
are referred to as ‘‘interpenetrated networks’’~IPN’s! and are
of considerable technological importance@9#. The static as-
pects of these systems have been discussed by de Ge
@10#; and analytic studies of early-time kinetics subsequ
to a quench are due to Derouicheet al. @11#, and Chikina and
Daoud@12#. An experimental study~via small-angle neutron
scattering! of microphase separation in IPN was done
Brulet et al. @13#.

Let us now return to phase separation in polymer-solv
mixtures. Numerical studies have attempted to model
replicate the experimental behavior discussed above.
class of studies models the gel formation by introducing
order-parameter-dependent mobility in the continuity eq
tion for the local composition variable. This mobility is set
zero~or nearly zero! in the gel phase. An early study in th
class is due to Sciortinoet al. @14#, who numerically inves-
tigated two-dimensional phase separation in a polym
solvent mixture at critical composition, i.e., with equal fra
tions of both components. These authors found that
coarsening system rapidly froze into a microstructure, a
they studied the onset of freezing and the morphology of
microstructure. Sappelt and Jackle@15# have also investi-
gated similar models ind52, though in the~equivalent! con-
text of a glass-forming phase. These authors undertoo
detailed numerical study of a wide range of mixture comp
sitions, and distinguished between two physical situations
the case where the ‘‘gel’’~or glass! phase is the minority
phase, domain growth proceeds unhindered because the
a connected region of high mobility for transport of polym
molecules. The corresponding domain growth law is
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usual LS law,L(t);t1/3. In the case where the ‘‘gel’’~or
glass! phase is the majority phase, domain growth is h
dered by the presence of a percolated low-mobility pha
However, Sappelt and Jackle did not observe complete fre
ing in their simulations—rather, they found that doma
growth proceeds~albeit slowly! through the collective mo-
tion of droplets of the minority phase.

The model we investigate in this paper also belongs to
above class. However, the focus of our study is differe
Both of the above studies are deterministic, and do not
clude thermal fluctuations. On the other hand, we are part
larly interested in the effects of thermal fluctuations on d
main growth in these systems.

An alternative approach to this problem was formulat
by Sekimotoet al. @16#, who investigated ad52 micro-
scopic model for a polymer-solvent mixture, which explicit
accounted for the elastic energy associated with gel defor
tions. These authors demonstrated that the coarsening sy
froze into a sponge-like structure, consisting of polymer-r
and solvent-rich domains, as a result of elastic pinni
Onuki and Puri@17# have used similar considerations to fo
mulate a dynamical model with a suitable coarse-grain
free-energy functional@18#. They studied this model numeri
cally for d52 and observed slow coarsening of the system
a sponge-like domain structure. Onuki and Puri also u
their model to obtain domain morphologies for the uniax
case, where domains are oriented in a particular direct
Again, both of these studies neglected the effects of ther
fluctuations.

Finally, we discuss a Monte Carlo~MC! study by Glotzer
et al. @19#. These authors considered a monomer-solv
mixture on a lattice, with nearest-neighbor monomers be
allowed to interact with two highly different energies—
corresponding to the absence or presence of a chemical
@20#. Glotzer et al. investigated phase-separation dynam
in this model using the standard Kawasaki spin-excha
kinetics. Their results showed that the initial stage of dom
growth ~when there are few chemical bonds! is analogous to
that for simple binary mixtures. However, a sufficiently lar
fraction of strong bonds gives rise to a pinning effect, whi
effectively freezes the evolving system into a microstructu
Of course, this system would ultimately coarsen into a tw
domain equilibrium structure but the time scales become
tremely long. However, as Glotzeret al. remark, ‘‘freezing’’
in their MC model is a consequence of the fact that
microscopic spin-exchange kinetics is only permitted
move one spin at a time—in this sense, the MC results ar
restricted relevance for real experiments.

III. DYNAMICAL MODEL AND LINEAR STABILITY
ANALYSIS

A. Lattice model and coarse-grained free energy

The starting point of our modeling is the lattice model
Glotzer et al. @19#. We consider a monomer-solvent~A-B!
mixture on a cubic lattice with the Hamiltonian
3-2
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H52eAA(̂
i j &

ni
Anj

A2eBB(̂
i j &

ni
Bnj

B1eAB(̂
i j &

~ni
Anj

B1ni
Bnj

A!

2K(̂
i j &

t i j ni
Anj

A , ~2!

wheree IJ(.0) refers to the nearest-neighbor interaction e
ergy between speciesI andJ; andni

A ,ni
B are the occupation

number variables at sitei for speciesA andB, respectively.
In Eq. ~2!, we have introduced the additional bond variab
t i j e$0,1%, which gives rise to an additional energy (2K) if a
chemical bond exists between two monomers. For a confi
ration with nl

Anm
A50, we always havet lm50. It is straight-

forward to demonstrate that^t lm&5ebK/(11ebK) for a con-
figuration withnl

A5nm
A51, whereb51/T(kB51).

Without loss of generality, we seteAA5eBB5eAB5e. Re-
calling thatni

B512ni
A , we obtain

H52(̂
i j &

~4e1Kt i j !ninj , ~3!

where we have dropped constant terms, and simplified n
tion (ni

A[ni). The appropriate ensemble has fixedT, com-
position, and number of sitesN. It is straightforward to sum
over the bond variables@19# to obtain the partition function

Z5(
$ni %

8expH @4be1 ln~11ebK!#(̂
i j &

ninj J
[(

$ni %
8exp$2bH eff%, ~4!

where the sum over configurations$ni% is constrained by the
overall composition of the binary mixture. Thus, our proble
reduces to the usual lattice gas~or Ising model!, for which
many exact results are available.

Subsequently, we will consider the dynamical evoluti
of a coarse-grained~mean-field or MF! version of this
Hamiltonian. In MF theory, the critical coexistence tempe
ture Tc is defined through (bc51/Tc)

q

4
@4bce1 ln~11ebcK!#51, ~5!

whereq is the coordination number of the lattice. The mon
mer densities in the coexisting phases aref05(16c0)/2,
wherec0 is the positive solution of the transcendental eq
tion

c05tanhH q

4
@4be1 ln~11ebK!#c0J . ~6!

Next, let us consider the coarse-grained version of the ab
lattice model, obtained using the Bragg-Williams approxim
tion. First, we consider the Helmholtz free energy per s
for a homogeneous configuration witĥni&5f, ^t i j &5u,
viz.,
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f ~f,u!.2
q

2
~4e1Ku!f21T@f ln f1~12f!ln~12f!#

1
qT

2
f2@u ln u1~12u!ln~12u!#, ~7!

where there are two entropy terms: one for the s
occupation variables and the other for the bond-occupa
variables. For order-parameter fields which vary slowly
space, we generalize the above expression to obtain

F@f,u#5E drW F f ~f,u!1
s

2
~¹W f!2G , ~8!

where we have introduced surface tension at the monom
solvent boundary with strengths.

B. Dynamical model and linear stability analysis

The density field is conserved and we associate diss
tive ‘‘model B’’ dynamics with it @21#. In the absence of
thermal fluctuations, the appropriate evolution equation i

]f~rW,t !

]t
52¹W •JW~rW,t !5¹W •H M ~f,u!¹W F dF

dfG J
5¹W •H M ~f,u!¹W F2q~4e1Ku!f1T lnS f

12f D
1qTf@u ln u1~12u!ln~12u!#2s¹2fG J .

~9!

In Eq. ~9!, the currentJW (rW,t) is proportional to the gradien
of the chemical potential. We have explicitly introduced
order-parameter-dependent mobilityM (f,u), which has a
strong dependence on whether or not the system is local
the gel phase. The precise form of this function will be d
cussed later. The time scale of phase separation (ts) is also
incorporated inM (f,u).

The chemical bonding which results in gel formation al
has an associated dynamics, which we model as a re
ational nonconserved~‘‘model A’’ ! dynamics@21# as follows:

]u~rW,t !

]t
52M̄

dF

du
5

qM̄

2
f2FK2T lnS u

12u D G . ~10!

In Eq. ~10!, the constant mobilityM̄ incorporates the time
scale of gelationtg . This equation has the static fixed poi
us5ebK/(11ebK), as expected. Furthermore, the time sc
of relaxation to this fixed point depends upon the loc
monomer density—there can be no chemical bonds in
gions where there are no monomers.

The system is initially in a high-temperature homog
neous phase with f(rW,t)5f01j(rW,t); u(rW,t)5 ū(t)
1x(rW,t) ( ū(0)5u0), where the fieldsj(rW,t) andx(rW,t) are
small-amplitude fluctuations. We have introduced a syste
atic time-dependent solution,ū(t)5V21*drWu(rW,t), for rea-
3-3
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sons which will shortly become clear. Subsequent to
quench, the growth of these fluctuations is determined by
appropriate linearized equations

]j~rW,t !

]t
5M ~f0 ,ū !¹2H F2q@4e1K ū2Tū ln ū

2T~12 ū !ln~12 ū !#1
T

f0~12f0!Gj
2qf0FK2T lnS ū

12 ū
D Gx2s¹2jJ , ~11!

and

dū~ t !

dt
1

]x~rW,t !

]t
5

qM̄

2
f0

2FK2T lnS ū

12 ū
D G

1qM̄f0FK2T lnS ū

12 ū
D Gj

2
qM̄

2

Tf0
2

ū~12 ū !
x. ~12!

The inhomogeneous term on the right-hand-side of
~12! determines the thermalization ofū(t) to its equilibrium
value

ū~`!5us5
ebK

11ebK
. ~13!

More generally, we consider the Fourier transform of E
~11!–~12! without the systematic piece as follows:

]j~kW ,t !

]t
5M ~f0 ,ū !k2H Fq@4e1K ū2Tū ln ū

2T~12 ū !ln~12 ū !#2
T

f0~12f0!
2sk2Gj

1qf0FK2T lnS ū

12 ū
D GxJ

[a11j~kW ,t !1a12x~kW ,t !, ~14!

and

]x~kW ,t !

]t
5qM̄f0FK2T lnS ū

12 ū
D Gj2

qM̄

2

Tf0
2

ū~12 ū !
x

[a21j~kW ,t !1a22x~kW ,t !. ~15!

We can obtain a general solution of this matrix equati
even though the coefficientsai j are time dependent. How
ever, recall thatū(t) is exponentially saturated to its equilib
02151
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rium value. Therefore, we consider the dynamics of fluct
tions with ū(t)5us . This simplifies Eqs.~14!–~15! as
follows:

]j~kW ,t !

]t
5M ~f0 ,us!k

2H q@4e1T ln~11ebK!#

2
T

f0~12f0!
2sk2J j

[lj~kW !j~kW ,t !, ~16!

]x~kW ,t !

]t
52

qM̄

2

Tf0
2

us~12us!
x[lxx~kW ,t !. ~17!

These equations have the obvious solutionsj(kW ,t)
5exp@lj(kW)t#j(kW,0); x(kW ,t)5exp@lxt#x(kW,0), fixing the time
scales of growth and decay of initial fluctuations in terms
parameters, which can be experimentally obtained. As
pected from the static considerations of Sec. III A, the ins
bility condition is

q@4be1 ln~11ebK!#2
1

f0~12f0!
.0. ~18!

If the system is unstable to phase separation, the growt
initial fluctuations is amplified by the presence of chemic
bonds. This is because the system finds it both energetic
and entropically favorable to phase separate into polym
rich regions, thereby facilitating the formation of chemic
bonds.

C. Incorporation of thermal noise and dimensionless rescaling

We will consider the physically relevant limit where th
time scale of gelation (tg) is much faster than the time sca
of segregation (ts). Thus, the bond variableu(rW,t)5us ev-
erywhere and the appropriate dynamical equation forf(rW,t)
is

]f~rW,t !

]t
5¹W •H M ~f,us!¹W F2q@4e1T ln~11ebK!#f

1T lnS f

12f D2s¹2fG J
[2¹W •JW~rW,t !, ~19!

which is just the usual Cahn-Hilliard~CH! equation with an
order-parameter-dependent mobility. We introduce therm
fluctuations through a conserved noise term in the curren

]f~rW,t !

]t
52¹W •$JW~rW,t !1hW ~rW,t !%. ~20!

For the case of constant mobility,M (f,us)5M0, there is a
standard prescription for the properties of noise so that
3-4
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system approaches its correct equilibrium, i.e., the Gaus
white noise has a zero average and obeys the fluctua
dissipation relation

^hW ~rW,t !&50,

^h i~rW,t !h j~rW8,t8!&52M0Td i j d~rW2rW8!d~ t2t8!. ~21!

In the present context, we are interested in a phys
situation where the mobility explicitly depends upon the
der parameter, i.e., we expect the mobility to be drastic
diminished in the gel phase. To the best of our knowled
there is no clear prescription for the correct properties
noise in this case. The straightforward generalization
placesM0 in Eq. ~21! by the corresponding order-paramete
dependent mobility@22#. There is some justification for suc
a generalization. For example, Dean@23# has derived the
stochastic equation obeyed by the density variable in an
sembly of Brownian particles interacting through a pair p
tential. This stochastic equation involves an order-parame
dependent mobility of the formM (f)5M0f, and Dean
demonstrates the above generalization to be correct in
context. More generally, the above prescription is only
first term in a Taylor-series expansion@24#. In the present
paper, we model thermal fluctuations by replacingM0
→M (f,us) in Eq. ~21!. We should stress that we are inte
ested in the far-from-equilibrium evolution of the syste
rather than the final approach to equilibrium, which wou
depend more sensitively on the precise nature of ther
fluctuations.

Next, we model the mobility following Sciortinoet al.
@14#, and Sappelt and Jackle@15#. Recall that the mobility is
very low in the gel-rich phase and normal in the solvent-r
phase. The density of chemical bonds in a region isp
5f2us , and the region is in the gel phase ifp.pc , the
corresponding percolation probability. Therefore, we
M (f,us)5M0h(f)[M0h̃(pc2f2us), whereh̃(x)50 if x

<0 andh̃(x)51 if x.0.
For the simulations described in Sec. IV, it is convenie

to introduce the order parameterc52f21. The corre-
sponding dynamical equation for the order parameter is

]c~rW,t !

]t
5¹W •H M ~c,us!¹W F @4T24qe2qT ln~11ebK!#c

1
4T

3
c32s¹2cG1hW J , ~22!

where we have expanded the functiong(c)5 ln(11c)
2ln(12c) up to cubic order inc. The mobility is now de-
fined as

M ~c,us!5M0h~c![M0h̃Fpc2S 11
c

cs
D 2us

4 G ,
wherecs is the saturation value of the order parameter.

Finally, we introduce dimensionless rescaling as follo
~with T,Tc):
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c5csc8, cs5A3Fqbe1
q

4
ln~11ebK!21G ;

rW5jrW8, j5A s

4TFqbe1
q

4
ln~11ebK!21G ;

t5tt8, t5
3j2

4TM0cs
2

;

hW 5
2TM0cs

3

3j
hW 8. ~23!

This results in the dimensionless equation~dropping primes!
are

]c~rW,t !

]t
5¹W •$h~c!¹W @2c1c32¹2c#1hW %, ~24!

with

^hW ~rW,t !&50,

^h i~rW,t !h j~rW8,t8!&5
6

cs
42d S 4T

3s D d/2

h~c!d i j d~rW2rW8!d~ t2t8!

[eh~c!d i j d~rW2rW8!d~ t2t8!, ~25!

wheree measures the strength of ‘‘dimensionless’’ noise; a
h(c)[h̃@pc2(11c)2(us/4)#. This is the model we use to
obtain the numerical results which are presented in the n
Sec. IV.

IV. DETAILED NUMERICAL RESULTS

We have numerically solved Eqs.~24!–~25! on a d52
lattice of sizeN2, with periodic boundary conditions in bot
directions. We used an isotropic Euler-discretization sche
to approximate derivatives. The discretization mesh si
wereDx51.3 andDt50.05. We work in the strong-bondin
limit with K large so thatus.1. The initial condition for the
order-parameter fieldc(rW,0) in each run consisted of uni
formly distributed small-amplitude fluctuations about an a
erage valuec0. Thermal noise of amplitudee was mimicked
by uniformly distributed random numbers with amplitudeA
5A3e/DxdDt. We have also performed simulations wi
Gaussian-distributed noise and the results are similar to th
presented here for uniformly distributed noise.

We characterize domain growth from a homogeneous
tial condition by: ~a! evolution pictures and profiles;~b!
time-dependent structure factors; and~c! characteristic length
scales. The structure factor is defined asS(kW ,t)
5^uc̄(kW ,t)u2&, wherec̄(kW ,t) is the discrete Fourier transform
of c̄(rW,t)5c(rW,t)2c0, and the angular brackets refer to a
averaging over different initial conditions and noise realiz
tions. For ad52 lattice, the wave vectors take discrete va
3-5
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JITENDRA SHARMA AND SANJAY PURI PHYSICAL REVIEW E64 021513
ues kW5(2p/NDx)(nx ,ny), where nx and ny range from
2(N/2) to (N/2)21. The structure factors are normalized
N22(kWS(kW ,t)51, and then spherically averaged to obta
the scalar functionS(k,t). The structure-factor data pre
sented here are obtained as an average over 20 indepe
runs for systems of sizeN5512. The characteristic lengt
scaleL(t) is defined as the inverse of the first moment of t
scalar structure factor, i.e.,L(t)5^k&21, where

^k&5

E
0

km
dk kS~k,t !

E
0

km
dk S~k,t !

. ~26!

In Eq. ~26!, km is the upper cutoff on the discrete lattic
value ofk. Typically, we setkm equal to half the magnitude
of the largest wave vector lying in the Brillouin zone of th
lattice.

A. Results for case withTÄ0

Let us first focus on results from deterministic simu
tions, withe50 (T50) in Eqs.~24!–~25!. These results are
analogous to those obtained earlier by Sciortinoet al. @14#;
and Sappelt and Jackle@15#.

Figure 1 shows the temporal evolution resulting from
random initial condition withc050.3. All evolution pictures
presented in this paper were obtained for lattices of sizN
5256. Regions with order parameterc.0 ~polymer-rich!
are marked in black, and regions withc,0 ~solvent-rich!
are unmarked. Recall that the gel phase is defined as a re
where a percolated cluster has formed, i.e.,f2us>fg

2us

51/2 for d52. For us.1, we havefg.0.71 and cg
.0.41. Thus, the dynamical evolution is frozen in regio
with c>cg . Because of the asymmetry in local values
the order parameter, the fractions of the gel and solv
phases are f g5(11c0)/(11cg) and f s5(cg2c0)/(1
1cg), respectively. Therefore, the gel phase percolates
lattice for c0.(cg21)/2. Figure 1 shows the emergence
droplets of the solvent-rich phase in a percolated matrix
zero-mobility gel phase. As expected, the system ‘‘freez
into a microstructure, though there may still be an extrem
slow growth due to cooperative motion of droplets@15#. Fig-
ure 2 shows the order-parameter profiles correspondin
the evolution pictures in Fig. 1. It is clear from these profi
that the dynamical evolution is frozen in most regions of
system.

Figure 3 demonstrates the dynamical scaling of the tim
dependent structure factor for the evolution shown in Fig
In this figure, we superpose data forS(k,t)L(t)22 versus
kL(t) from different times. The scaling is excellent, which
an obvious consequence of the fact that there is almos
evolution of the morphology!! Nevertheless, the form of t
scaling function is of interest to us. We will subsequen
compare this function with the scaling function for the ca
with thermal noise.

Figure 4~a! plots the characteristic length scaleL(t) ver-
sust for a range of values ofc0. Our simple argument abov
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suggests that the polymer-rich phase is a majority phase
c0>20.29. However, numerical results show that the va
of c0 at which both phases percolate isc0.20.2. Forc0
<20.2, the high-mobility phase percolates and there is
hindrance of the usual evaporation-condensation mechan
for phase separation@1#. In this case, the numerical data fo
the length scale is consistent with the LS growth law,L(t)
;t1/3. For c0@20.2, the phase-separation process is ‘‘fr
zen’’ due to the absence of diffusion in the percolated ze
mobility region. Forc0.20.2, cooperative growth mode
contribute and a slow dynamical evolution is seen. This i
consequence of collective motion of solvent droplets in
gel phase—driven by chemical potential gradients@15#. Fig-
ure 4~b! replots the data from Fig. 4~a! on a log-log scale.

B. Results for case withTÌ0

As we have stated earlier, our primary interest in th
paper is the effect of thermal fluctuations on the above s
nario. The introduction of noise in the context of a syste
with order-parameter-dependent mobility has already b
discussed in Sec. III C. We have obtained numerical res
for a range of moderate values of the noise amplitude,
these results are similar up to prefactors. In this paper,
present representative numerical results fore50.1.

FIG. 1. Temporal evolution of our model from a random initi
condition. The initial state consisted of an order-parameter fi
with uniformly distributed small-amplitude fluctuations about
average valuec050.3. The evolution pictures are obtained from
isotropic Euler discretization of the deterministic version of Eq
~24!–~25! (e50) with mesh sizesDx51.3 andDt50.05. The dis-
crete equations were implemented on ad52 lattice of sizeN2, with
periodic boundary conditions in both directions. The snapsh
shown correspond to the case withN5256. Regions with order
parameterc.0 ~polymer rich! are marked in black, while region
with c,0 ~solvent rich! are unmarked. The evolution times labe
ing each snapshot refer to the time after the initial quench.
3-6
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Figure 5 shows the temporal evolution in the noisy ca
from a homogeneous initial condition withc050.3. Figure 5
should be contrasted with Fig. 1—there are no signs
‘‘freezing’’ or slow growth in the present context. The zer
mobility phase still percolates the system, so domain gro
cannot occur via the evaporation-condensation mechan
However, the thermal noise induces Brownian motion
droplets and phase separation proceeds via a droplet co
cence mechanism. Figure 6 shows the order-parameter
files corresponding to the evolution pictures in Fig. 5.

Next, we examine the scaling of the time-dependent str
ture factor. Figure 7 plots data forS(k,t)L(t)22 versuskL(t)
from different times. Again, the scaling is excellent, thou
the system undergoes rapid evolution in this case. The s
line refers to the scaled structure factor~at t520 000) from
the deterministic case shown in Fig. 3. The difference in
scaled structure factors for the deterministic and noisy ca
reflects the difference in the morphologies. For theT50
case, the initial fluctuations become trapped and well-form
domains are largely absent. TheT50 morphology~see Fig.
1! is comparable to the initial stages of growth for theT
.0 case, e.g., compare pictures att520 000 in Fig. 1 and
t5100 in Fig. 5. Figure 7~b! is a log-log plot of the scaled
structure factor data. The straight line with slope23 corre-
sponds to thed52 Porod law,S(k,t);k2(d11) for largek,
which characterizes scattering off sharp interfaces. Our
merical data for theT.0 case is in conformity with the
Porod law, indicating the presence of sharp domain wall

Finally, we investigate the time dependence of the ch
acteristic length scale in Fig. 8, which plots ln@L(t)# versus
ln t for c050.4,0.3,0.2~upper frame! and c050.0,20.2,
20.3,20.4 ~lower frame!. The numerical results in the uppe
frame demonstrate that Brownian motion of droplets~driven

FIG. 2. Order-parameter profiles for the evolution pictures
Fig. 1. We plot the order parameterc(x,N/2,t) vs x along a hori-
zontal cross section at the middle of the lattice. For clarity, we o
present profiles for the regionxP@0,N/2#. The profiles are shown
for t5100,200,2000,20 000, and are denoted by the specified
types. For reference, a horizontal line is drawn atc050.3.
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by thermal fluctuations! restores a LS-like growth lawL(t)
;t1/3. This is the central result of the present paper. Th
are no signs of freezing in this case, unlike in the determ
istic case, and domain growth apparently proceeds
completion. Of course, although the growth law is similar
the LS law, the mechanism involved is quite different. D
main growth occurs via the Brownian motion and coale
cence of droplets. Consider a droplet of sizeL. The diffusion
constant of this droplet isD;T/L, and the timet required to
traverse a distanceL scales asL2;(T/L)t. Thus, we expect
L(t);(Tt)1/3 for domain growth by Brownian coalescenc
The argument is analogous to that of Ohta@25#; and Siggia
@26# in the context of binary fluids. The numerical results
the lower frame are also consistent with the LS growth la
although the data forc050.0 is still not in the asymptotic
regime. Forc0,20.2, domain growth occurs due to bo
evaporation-condensation and Brownian coalescence me
nisms, which give rise to identical growth laws.

Experimentalists@6# have emphasized that phase sepa
ing polymer-solvent systems freeze into microstructures o
when the quenches are deep. Bansilet al. @6# have argued
that this is because the time scales of phase separation
gelation are comparable only at low temperatures, allow
the gelation process to interfere with the phase-separa

y

e

FIG. 3. ~a! Superposition of data forS(k,t)L(t)22 vs kL(t)
from timest54000,12 000,20 000—denoted by the specified sy
bols. The simulation details and parameters are the same a
Fig. 1. The structure-factor data are obtained as an average ov
independent runs for lattices of sizeN5512. The length scaleL(t)
is defined as the reciprocal of the first moment of the spheric
averaged structure factor.~b! Plot of ln@S(k,t)L(t)22# vs ln@kL(t)# for
data from~a!. The solid line has a slope of23 and refers to Porod’s
law, S(k,t);k2(d11) for largek, which characterizes scattering o
sharp interfaces@1#.
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process. Our results in this paper present an alternative
planation, which may be relevant in some experiments
general, the presence of a low-mobility percolated ma
suppresses diffusion and disables the evaporat

FIG. 4. ~a! Time dependence of characteristic length scaleL(t)
vs t for the deterministic (T50) evolution of our model. We
present results forc050.4,0.3,0.2,0.0,20.2,20.3,20.4—denoted
by the specified symbols. In each case, we attempted to fit
numerical data to the power-law form,L(t)5a1btx, and the best-
fit lines ~wherever a fit was possible! are superposed on the releva
data sets. The corresponding best-fit exponents are specified i
figure. The error bars on these exponents are60.01. For reference
the solid line denotes length-scale data from a simulation of
Cahn-Hilliard~CH! equation, i.e., Eqs.~24!–~25! with h(c)51 and
e50. ~b! Plot of ln@L(t)# vs ln t for the data from~a!. The solid line
has a slope 1/3 and refers to the Lifshitz-Slyozov~LS! growth law.
02151
x-
n
x
n-

condensation mechanism for phase separation. Howe
thermal fluctuations restore a LS-like growth law through t
Brownian coalescence mechanism. Clearly, deep quen
suppress thermal fluctuations and also disable the Brow
coalescence mechanism—thereby resulting in microstruc
formation in coarsening polymer-solvent mixtures.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and d
cussion of the results presented here. We have formulat

e

the

e

FIG. 5. Analogous to Fig. 1, but with thermal fluctuations i
cluded. The amplitude of thermal noise corresponding to this sim
lation wase50.1.

FIG. 6. Analogous to Fig. 2, but for the evolution pictures
Fig. 5.
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simple dynamical model for phase separating polym
solvent mixtures, where the polymer-rich region underg
gelation. This model considers the coupled dynamics of tw
order parameters:~a! conserved kinetics for the polymer de
sity field; and ~b! nonconserved kinetics for the chemic
bond field, which models the possibility of a bond betwe
monomers on neighboring sites. We are interested in
physically relevant limit, where the time scale of gelation
much faster than the time scale of phase separation. In
limit, our dynamical model reduces to the usual CH mo
for phase separation—generalized to include an ord
parameter-dependent mobility, which is set to zero in the
phase.

Our modeling does not explicitly account for hydrod
namic effects. Nevertheless, we expect our results to app
that context also, because hydrodynamic modes are not
evant for phase separation in the strongly off-critic
quenches considered here. In general, these modes onl
come relevant when the coarsening system has a bicon
ous domain morphology@1#. Furthermore, even for bicon
tinuous morphologies, we expect high-viscosity gel-ri
regions to strongly dampen fluid velocity fields.

Our primary interest in this paper is the effect of therm
fluctuations on phase separation in these polymer-sol
mixtures. To the best of our knowledge, there is no stand
prescription for the incorporation of thermal noise in mod
with order-parameter-dependent mobility. Therefore, we e
ploy a straightforward generalization of the usual presc
tion, which is justifiable in special cases@22,23#. As we are
interested in the far-from-equilibrium problem of phase se

FIG. 7. Analogous to Fig. 3, but for the noisy evolution depict
in Fig. 5. The solid lines in~a! and~b! denote thet520 000 data for
the T50 case shown in Fig. 3.
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ration, we believe that this generalization is reasonable
that context.

We have studied the growth of initial fluctuations abou
homogeneous high-temperature state, subsequent t
quench. The gelation process amplifies the growth of ini
fluctuations because it is energetically and entropically fav
able for monomers to aggregate and form chemical bonds
the context of linearized theory, we have quantified the ti
scales of growth of fluctuations in terms of experimenta
measurable parameters.

Subsequent to the linearized regime, the effects of non
earity and the order-parameter-dependent mobility beco
relevant. In the absence of thermal fluctuations, the pha
separating system ‘‘freezes’’ into a microstructure~or slows
down drastically! when the gel phase percolates t
system—due to suppression of the evaporation-condensa
mechanism for phase separation. However, in the presenc
thermal fluctuations, phase separation is enabled by
Brownian motion and coalescence of droplets. The co
sponding growth law is similar to the Lifshitz-Slyozov law
i.e., L(t);t1/3. We believe that our results provide an alte
native explanation for the experimental observation that p
ning in phase-separating polymer-solvent mixtures occ
only for low-temperature quenches@6#.

We are presently interested in investigating the effects
thermal noise on freezing~or slow growth! in models of
polymer-solvent mixtures where the elastic energy has b
explicitly accounted for@17#. It seems plausible that Brown
ian coalescence processes will also play an important rol
that context.

FIG. 8. Analogous to Fig. 4~b!, but for evolution with thermal
fluctuations. For clarity, the upper frame shows data forc0

50.4,0.3,0.2; and the lower frame shows data forc050.0,20.2,
20.3,20.4. The solid line in both frames has a slope of 1/3, a
refers to the LS growth law.
3-9
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